
AVI File Format

1

Last change: December 14, 2006

Contents

1 Introduction 3
1.1 Why another AVI �le format documentation? 3
1.2 Basic data structures . 4

1.2.1 Chunks . 4
1.2.2 Lists . 4

1.3 AVI �le types . 5

2 Layout of an AVI �le 6
2.1 Headers . 7

2.1.1 MainAVIHeader (avih) . 7
2.1.2 The Stream header list - general . 9
2.1.3 The stream header list element: strh 10
2.1.4 The stream header list element: strf 11
2.1.5 The stream header list element: indx 11
2.1.6 The stream header list element: strn 11

3 AVI Indexes 12
3.1 old style index . 12
3.2 Open-DML Index . 13

3.2.1 Upper Level Index ('Super Index') 14
3.2.2 The Standard Index . 15

3.3 Using the Open-DML Index . 17

4 The movi - Lists 18

5 Audio types requiring special attention 19
5.1 MP3 . 19
5.2 AC3 . 19
5.3 DTS . 20
5.4 VBR audio - general . 20
5.5 MPx VBR . 21
5.6 AAC . 21
5.7 VFR Audio - Storing Vorbis in AVI . 21

6 Subtitles in AVI �les 22

7 Garbage in AVI �les 24
7.1 Constant Bitrate . 24
7.2 Variable Bitrate . 24

2

8 Overhead of AVI �les 25
8.1 General . 25
8.2 Getting number of CHUNKS . 25

8.2.1 Video . 25
8.2.2 Audio . 25
8.2.3 Examples . 25

3

1 Introduction

1.1 Why another AVI �le format documentation?

Even though the AVI �le format has been around for more than 10 years, there is no docu-
mentation available which does not only describe the format itself, but which also informs
about issues that come from �awed demuxers and �awed decoders, and how to circumvent
them.

The goal of this document is not only to explain the AVI format, as it is de�ned on the
paper, but rather how to use it, when working with �awed muxers, �awed demuxers, and
�awed decompressors.

4

1.2 Basic data structures

There are 2 types of atoms in AVI �les:

1.2.1 Chunks

typedef struct {

DWORD dwFourCC

DWORD dwSize

BYTE data[dwSize] // contains headers or video/audio data

} CHUNK;

1.2.2 Lists

typedef struct {

DWORD dwList

DWORD dwSize

DWORD dwFourCC

BYTE data[dwSize-4] // contains Lists and Chunks

} LIST;

A chunk containing video, audio or subtitle data uses a dwFourCC containing 2 hexadecimal
digits specifying the stream number and 2 letters specifying the data type (dc = video, wb
= audio, tx = text). The values dwFourCC and dwSize have the same meaning in both of
the structures:
dwFourCC describes the type of the chunk (for example 'hdrl' for 'header list'), and dwSize

contains the size of the chunk or list, including the �rst byte after the dwSize value. In the
case of Lists, this includes the 4 bytes taken by dwFourCC!

The value of dwList can be 'RIFF' ('RIFF-List') or 'LIST' ('List').

5

1.3 AVI �le types

Basicly, there are 3 types of AVI �les:

• AVI 1.0 The original, old AVI �le.

• Open-DML An extension to the AVI �le format. Version 1.02 has been speci�ed by
28/02/1996. The most important improvements are:

� almost unlimited �lesize (much more than what NTFS allows, for example)

� overhead reduced by 33%

• Hybride-Files: Open-DML �les that contain an additional Legacy Index for compat-
ibility reasons. This is not an "o�cial" word for those �les, but it is describing that
�le type pretty well. Hybride �les containing only one RIFF List can be treated as
either �le type.

This document describes the subset of Open-DML 1.02 �le format features, as well as some
additions ('hacks'), which work in common players if the proper (freely available) �lters are
installed. Features that work in Open-DML, but not in AVI 1.0, will be indicated to be
Open-DML only.

6

2 Layout of an AVI �le

A RIFF-List where dwFourCC = 'AVI ' shall be called a 'RIFF-AVI-List', a RIFF-List

where dwFourCC = 'AVIX' shall be called a 'RIFF-AVIX-List'.

Every AVI �le has the following layout:

RIFF AVI // mandatory

{ RIFF AVIX } // only for Open-DML files

Unlike what a uint32 suggests, the limit for the size of those lists is not 4 GB, but

• for AVI 1.0: size(RIFF-AVI) < 2 GB

• for Open-DML:

� size(RIFF-AVI) < 1 GB (!!) (assumed to be 2 GB by some muxing applications,
like VirtualDub!)

� size(RIFF-AVIX) < 2 GB

As Windows XP insists on reading the entire �rst RIFF AVI list if no Legacy Index (see
page 12) is found, and as that Legacy Index causes overhead, it is recommended to create
RIFF-AVI-Lists as small as possible.

7

2.1 Headers

The header section of an AVI �le looks like this:

The following sections describe the meaning of these lists and chunks.

2.1.1 MainAVIHeader (avih)

This structure is de�ned as follows:

typedef struct

{

DWORD dwMicroSecPerFrame; // frame display rate (or 0)

DWORD dwMaxBytesPerSec; // max. transfer rate

DWORD dwPaddingGranularity; // pad to multiples of this

// size;

DWORD dwFlags; // the ever-present flags

DWORD dwTotalFrames; // # frames in file

DWORD dwInitialFrames;

DWORD dwStreams;

DWORD dwSuggestedBufferSize;

DWORD dwWidth;

DWORD dwHeight;

DWORD dwReserved[4];

} MainAVIHeader;

8

Unfortunately, those values do NOT have the meaning they seem to have when looking at
their names.

• dwMicroSecPerFrame

Contains the duration of one video frame in microseconds. This value can be ignored
(see stream header), but shall be written correctly by any AVI writer.
Important: Some broken programs, like AVIFrate, write the framerate value in the
stream header, but not dwMicroSecPerFrame. Thus, dwMicroSecPerFrame should not
be considered reliable!

• dwMaxBytesPerSec

Highest occuring data rate within the �le. That value is of no importance either. Its
reliability should not be overrated.

• dwPaddingGranularity

File is padded to a multiple of this

• dwFlags

See below

• dwTotalFrames

Contains the number of video frames in the RIFF-AVI list (it should NOT contain
the total number of frames in the entire �le if there are RIFF-AVIX-Lists. Some tools
claiming to handle AVI �les even assume this, but it de�nitely violates the Open-DML
�le format speci�cation. Such applications are broken.) As some AVI �le muxers write
bad values here, this value should not be considered reliable.

• dwInitialFrames

Ignore that

• dwStreams

Number of streams in the �le

• dwSuggestedBufferSize

Size of bu�er required to hold chunks of the �le. The reliability of this value should
not be overrated.

• dwWidth

Width of video stream

• dwHeight

Height of video stream

Available Flags for MainAVIHeader::dwFlags

• AVIF_HASINDEX

The �le has an index

9

• AVIF_MUSTUSEINDEX

The order in which the video and audio chunks must be replayed is determined by the
index and may di�er from the order in which those chunks occur in the �le.

• AVIF_ISINTERLEAVED

The streams are properly interleaved into each other

• AVIF_WASCAPTUREFILE

The �le was captured. The interleave might be weird.

• AVIF_COPYRIGHTED

Ignore it

• AVIF_TRUSTCKTYPE (Open-DML only!)
This �ag indicates that the keyframe �ags in the index are reliable. If this �ag is not
set in an Open-DML �le, the keyframe �ags could be defective without technically
rendering the �le invalid.

2.1.2 The Stream header list - general

There is one strl - List for each stream. If the number of strl - Lists inside the hdrl - List
is di�erent from MainAVIHeader::dwStreams, a fatal error should be reported.

10

2.1.3 The stream header list element: strh

typedef struct {

FOURCC fccType;

FOURCC fccHandler;

DWORD dwFlags;

WORD wPriority;

WORD wLanguage;

DWORD dwInitialFrames;

DWORD dwScale;

DWORD dwRate; /* dwRate / dwScale == samples/second */

DWORD dwStart;

DWORD dwLength; /* In units above... */

DWORD dwSuggestedBufferSize;

DWORD dwQuality;

DWORD dwSampleSize;

RECT rcFrame;

} AVIStreamHeader;

Again, the meaning is not always obvious.

• fccType

Can be

� 'vids' - video

� 'auds' - audio

� 'txts' - subtitle

• fccHandler

FourCC of codec to be used.

• dwFlags

The following �ags are de�ned:

� AVISF_DISABLED - Stream should not be activated by default

� AVISF_VIDEO_PALCHANGES - Stream is a video stream using palettes where the
palette is changing during playback.

• dwInitialFrames

Number of the �rst block of the stream that is present in the �le.

• dwRate / dwScale =
samples / second (audio) or
frames / second (video).
dwScale and dwRate should be mutually prime. Tests have shown that for example
10,000,000/400,000 instead of 25/1 results in �les that don't work on some hardware
MPEG4 players.

11

• dwStart

Start time of stream. In the case of VBR audio, this value indicates the number of
silent frames to be played before the stream starts.

• dwLength

size of stream in units as de�ned in dwRate and dwScale

• dwSuggestedBufferSize

Size of bu�er necessary to store blocks of that stream. Can be 0 (in that case the
application has to guess), but should not be 0, as Microsoft's AVI splitter does not
handle this case properly in some cases (e.g. MP3-CBR in Open-DML �les)

• dwQuality

should indicate the quality of the stream. Not important

• dwSampleSize

number of bytes of one stream atom (that should not be split any further).

2.1.4 The stream header list element: strf

The structure of the strf chunk depends on the media type.
Video streams use the BITMAPINFOHEADER structure, whereas audio streams use the WAVEFORMATEX
structure.

2.1.5 The stream header list element: indx

This chunk contains the upper level index for the stream. See page 13.

2.1.6 The stream header list element: strn

This element contains a name for the stream. That stream name should only use plain
ASCII, especially not UTF-8.

12

3 AVI Indexes

3.1 old style index

The index as described is the index you will �nd in AVI 1.0 �les. It is placed after the movi
List in the RIFF AVI List. The data section of the idx1 chunk has the following layout:

AVIINDEXENTRY index_entry[n]

typedef struct {

DWORD ckid;

DWORD dwFlags;

DWORD dwChunkOffset;

DWORD dwChunkLength;

} AVIINDEXENTRY;

Those values have the following meaning:

• ckid
Speci�es a four-character code corresponding to the chunk ID of a data chunk in the
�le.

• dwFlags
The following �ags are de�ned:

� AVIIF_KEYFRAME: The chunk the entry refers to is a keyframe.

� AVIIF_LIST: The entry points to a list, not to a chunk.

� AVIIF_FIRSTPART: Indicates this chunk needs the frames following it to be used;
it cannot stand alone.

� AVIIF_LASTPART: Indicates this chunk needs the frames preceding it to be used;
it cannot stand alone.

� AVIIF_NOTIME: The duration which is applied to the corresponding chunk is 0.

If neither AVIIF_FIRSTPART nor AVIIF_LASTPART is set, the chunk can be used alone,
in other words, it is at least one packet of the corresponding stream. This is important
for storing VBR audio streams in AVI �les (see chapter 5.4)

• dwChunkO�set
Contains the position of the header of the corresponding Chunk.
Warning: This can be either the absolute position in the �le, or the position relatively
to the �rst byte of the 'movi' identi�cator. An AVI File parser must be able to handle
both versions.

• dwChunkLength
Contains the size of the corresponding chunk in bytes.

13

3.2 Open-DML Index

The general structure of an Open-DML-Index-Chunk is the following:

typedef struct _aviindex_chunk {

FOURCC fcc;

DWORD cb;

WORD wLongsPerEntry;

BYTE bIndexSubType;

BYTE bIndexType;

DWORD nEntriesInUse;

DWORD dwChunkId;

DWORD dwReserved[3];

struct _aviindex_entry {

DWORD adw[wLongsPerEntry];

} aIndex [];

} AVIINDEXCHUNK;

Every subtype of Open-DML index structures is compatible to this one. The elements have
the following meaning:

• fcc, cb: Chunk header, same as dwFourCC and dwSize in the CHUNK structure

• wLongsPerEntry: every aIndex[i] has a size of 4*wLongsPerEntry bytes. (the struc-
ture of each aIndex[i] depends on the special type of index)

• bIndexType, bIndexSubType: de�nes the type of the index

• nEntriesInUse: aIndex[0]..aIndex[nEntriesInUse-1] are valid

• dwChunkId: ID of the stream the index points into, for example '00dc'.
Consequently, one such index chunk can only point to data of one and the same stream.

14

3.2.1 Upper Level Index ('Super Index')

The upper level index ('super index') points to other index chunks and has the following
structure:

typedef struct _avisuperindex_chunk {

FOURCC fcc;

DWORD cb;

WORD wLongsPerEntry;

BYTE bIndexSubType;

BYTE bIndexType;

DWORD nEntriesInUse;

DWORD dwChunkId;

DWORD dwReserved[3];

struct _avisuperindex_entry {

__int64 qwOffset;

DWORD dwSize;

DWORD dwDuration;

} aIndex[];

} AVISUPERINDEX;

The following values are now de�ned more speci�cally:

• bIndexType = AVI_INDEX_OF_INDEXES

• bIndexSubType = [AVI_INDEX_2FIELD | 0]

• wLongsPerEntry = 4

As you can see, the aIndex array now consists of 4 DWORDs per entry. The values have the
following meaning:

• qwOffset: Position of the index chunk this entry points to in the �le

• dwSize: The size of the standard or �eld index chunk the entry is pointing to

• dwDuration: The duration, measured in stream ticks as indicated in the AVI stream
header. In case of video or VBR audio, that usually refers to the number of frames.
Important:
VirtualDub 1.4.10 and earlier versions wrote b0rked values for this member in the
audio stream. Thus, an AVI parser should be able to handle �les without using this
value!

15

3.2.2 The Standard Index

This index type contains pointers to video, audio or subtitle chunks. It also is a special form
of the general Open-DML Index and looks like this:

typedef struct _avistdindex_chunk {

FOURCC fcc;

DWORD cb;

WORD wLongsPerEntry;

BYTE bIndexSubType;

BYTE bIndexType;

DWORD nEntriesInUse;

DWORD dwChunkId;

__int64 qwBaseOffset;

DWORD dwReserved3;

struct _avistdindex_entry {

DWORD dwOffset;

DWORD dwSize;

} aIndex[];

} AVISTDINDEX;

• wLongsPerEnrty:
As you can see easily, each aIndex[i] takes 8 bytes,
so wLongsPerEntry = 2

• bIndexSubType: = 0

• bIndexType:= AVI_INDEX_OF_CHUNKS

• qwBaseOffset:
This value is added to each dwOffset value of the AVISTDINDEX.

• dwOffset, dwSize: These elements de�ne the position (qwBaseOffset + dwOffset)
of the data section of the corresponding CHUNK (NOT the chunk header!) and its
length. There are nEntriesInUse such pairs, each one describing one video/audio
frame. Note that Bit 31 of dwSize indicates the frametype: If this bit is set, this frame
is not a keyframe.

16

Low-overhead mode

The Open-DML speci�cation does not explicitly require that each "data section" the index
contains an entry to be preceded by a chunk header. Thus, several frames can be put into
one chunk, while having one index entry per frame. This way, only few frames have a chunk
header, reducing the overhead by 50% compared to normal Open-DML �les. This means, of
course, that the AVIF_MUSTUSEINDEX �ag in the main AVI header must be set, to force any
parser to use the index. Files created this way will be called "low overhead AVI �les".
This is not an AVI �le type on its own. Any parser handling that �ag, as well as the Open-
DML index correctly, should be compatible to such �les. Microsoft's AVI splitter, as well as
VirtualDub(Mod) can handle such �les without problems, without having been updated to
do so.

17

3.3 Using the Open-DML Index

The preceding section described what the Open-DML Index looks like. This section will deal
with using it.

Each stream contains an 'indx' chunk in its stream header list ('strl'). This chunk is a
Super Index chunk.

As each Standard Index contains one 64 bit o�set and then a list of 32 bit o�sets relatively to
the 64 bit o�set, one Standard Index chunk can only point to data within one 4 GB segment.
Thus you need one Standard Index per 4 GB �le size per stream.

Unfortunately, it seems that Microsoft did not read the speci�cation properly: If a �le
contains more than 3 audio streams, then the Microsoft AVI Splitter will not recognize �les
using such large Standard Index chunks. It is required to use smaller pieces. Tests have
shown that pieces with 15000 entries each are small enough to be processed correctly by
Microsoft's AVI splitter.

18

4 The movi - Lists

The Movi - Lists contain Video, Audio, Subtitle and (secondary) index data. Those can be
grouped into rec - Lists. Example:

LIST movi

LIST rec

01wb

01wb

02wb

03wb

03wb

03wb

00dc

00dc

LIST rec

01wb

02wb

LIST rec

...

...

ix01

ix02

ix03

....

....

The following chunk header IDs are de�ned:

• ..wb: audio chunk

• ..dc: video chunk

• ..tx: subtitle chunk

• ix..: standard index block

Grouping chunks into rec - Lists prevents excessive seeking when using the Microsoft AVI
splitter for replay, but does not allow playback on some standalone replay devices.

The maximum size of a chunk of a stream should be smaller than the corresponding dwSuggestedBufferSize
value. Otherwise, some players, especially the Microsoft AVI splitter, could malfunction.

19

5 Audio types requiring special attention

5.1 MP3

wFormatTag = 0x0055

An MP3 audio stream consists of inseparable frames. MP3 decoders should be able to handle
partial frames, but it is nevertheless recommended to store entire MP3 frames in the AVI
chunks.

The strf chunk is an MPEGLAYER3WAVEFORMAT structure, which is an extention to the
WAVEFORMATEX structure:

typedef struct mpeglayer3waveformat_tag {

WAVEFORMATEX wfx;

WORD wID;

DWORD fdwFlags;

WORD nBlockSize;

WORD nFramesPerBlock;

WORD nCodecDelay;

} MPEGLAYER3WAVEFORMAT;

Important:
This is only valid for MP3 ('MPEG Layer 3'), not for MP1 or MP2 ('MPEG Layer 1 / 2').

If the MP3 stream has a variable bitrate, then you need to convince DirectShow to seek
properly. See section 5.4 (page 20) for more details on VBR audio streams in AVI �les.

Unfortunately, whoever came up with the idea didn't think enough about it: It is possible
to create MP3 audio frames larger than 1152 bytes if the sample rate is 32 khz or less. After
reading and understanding section 5.4, you'll see why such audio frames render an MP3
stream unplayable if nBlockSize is set to 1152, which is usually done for MP3. Using a
larger value would resolve this issue. However, some programs read an MP3 stream as VBR
if and only if this value is exactly 1152. In other words, low sample rates in combination
with high bitrates are a problem for MP3 VBR streams in AVI �les.

5.2 AC3

wFormatTag = 0x2000

Muxing AC3 into AVI is far more problematic than most other audio formats. The reason
is that a lot of decoders (software as well as hardware) are severely b0rked.

An AC3 stream consists, like MP3, of individual, inseparable frames. It is required that
any audio chunk of an AVI �le contains a few (complete!) AC3 frames. Otherwise, some
AC3 decoders will miscalculate the duration of a chunk. As the audio stream is considered
the master stream for playback in DirectShow, this miscalculation will lead to jerky video
playback.

20

Theoretically, chunks containing one AC3 frame are valid, but there are hardware decoders
which won't work with such streams. If you place more than 6 AC3 frames into one chunk,
you might get increased playback speed. Thus, the recommendation is to place be-
tween 2 and 5 AC3 frames into one AVI chunk.

5.3 DTS

wFormatTag = 0x2001

It seems to work out to place between 2 and 20 DTS frames in one AVI chunk. I have not
yet tried higher values on my own. If you have a hardware DTS decoder, please do some
testing and report back what values work and which ones don't. Just like with AC3, do not
split up any DTS frames.

5.4 VBR audio - general

Just like the video stream of virtually every AVI �le does have a variable bitrate and a
constant frame duration (e.g. 40ms), an audio stream of an AVI �le can also have variable
bitrate, if the frame duration is constant. This means, placing Vorbis audio in an AVI �le
will NOT result in anything playable using the method described below.

As the goal is to make DirectShow seek in the stream like in a video stream, it is required
to use some of the stream header values in the same way they are used with video streams.
That means:

• dwRate contains the sample rate

• dwScale contains the number of samples in one audio frame

• WAVEFORMATEX::nBlockAlign must have a value at least as big as the largest frame of
that stream, measured in bytes.

• dwSampleSize = 0

• Each chunk contains entire stream packets and is therefore marked as such. Neither
AVIIF_LASTPART nor AVIIF_FIRSTPART is set for any chunk. This way, DirectShow
assumes each chunk to contain a packet of the duration indicated in the stream headers.

This way, you can ensure that the M$ AVI Splitter will believe that the duration of every
chunk is
[roundup(chunk size / nBlockAlign)] * dwScale / dwRate

You can, of course, create units larger than one frame to decrease overhead (independantly
from "low overhead muxing" as described on page 16).
However, if a stream is VBR, it is required that every chunk (in the case of "normal" �les)
or every piece of audio data the index points to (in the case of "low overhead AVI �les")
contains the same number of samples. The dwScale value needs to be set accordingly.

21

5.5 MPx VBR

• MPEG 1 Layer 3: 1152 samples per frame

• MPEG 2 Layer 3: 576 samples per frame

• MPEG 1/2 Layer 2: Strongly discouraged from being used, because the default MPEG
Layer 2 decoder present onWindows systems does not recognise MPEG Layer 2 streams
when using VBR headers.

5.6 AAC

For AAC, one RAW AAC frame usually spans over 1024 samples. However, depending on
the source container (e.g. ADTS), it is theoretically possible that you are not able to extract
packets of equal duration from your source �le. In this case, it is highly recommended not
to mux the AAC stream into AVI, but report a fatal error instead.

AAC and HE-AAC require private data in the corresponding WAVEFORMATEX structures. See
the source code of AVI-Mux GUI (FillASI.cpp) for details.

5.7 VFR Audio - Storing Vorbis in AVI

Generally, the AVI �le format does not support variable framerate streams. However, such
streams can nevertheless be stored in AVI �les when it is possible to create AVI chunks of
constant duration, so that the stream can be treated as a normal VBR stream. There are
basicly 2 possible ways to do that:

• Building larger "macro frames" of constant duration and placing one such macro frame
into one chunk. This requires a decoder that is able to decode a sequence of independant
frames at once, a decoder which does not require that only one single frame at once
be transmitted. The currently available Vorbis decoders do no meet this requirement.

• The duration of one chunk is set to a very small value, several empty frames are added
after one that is supposed to be long. This, however, causes a lot of overhead.

FFMPEG is using the second idea. However, �mpeg is increasing the overhead even more, as
it stores frame headers for each of the padding chunks, wasting 8 bytes each time, instead of
only storing one of them physically, adding an index entry everytime such a chunk is required,
and setting AVIF_MUSTUSEINDEX. For such streams, the following ID is used: wFormatTag

= 0x566F. The Vorbis initialization packets (the �rst 3 packets of an OGG/Vorbis �le) are
stored as private data in the strf chunk. Each vorbis initialization packet is stored the
following way:

big_endian_int16 size

char data[size];

22

6 Subtitles in AVI �les

This section explains how to store subtitles in AVI �les, so that VSFilter can be used to load
and select subtitles.

One subtitle stream is stored in one single chunk. That chunk contains header data, followed
by an entire SRT or SSA �le. If that �le is using UTF-8 encoding, the BOM should be
included as well. The header is de�ned as follows:

char[4]; // 'GAB2'

BYTE 0x00;

WORD 0x02; // unicode

DWORD dwSize_name; // length of stream name in bytes

char name[dwSize_name]; // zero-terminated subtitle stream

name encoded in UTF-16

WORD 0x04;

DWORD dwSize; // size of SRT/SSA text file

char data[dwSize]; // entire SRT/SSA file

Stream header chunk

typedef struct {

FOURCC fccType; // "txts"

FOURCC fccHandler; // 00 00 00 00

DWORD dwFlags;

WORD wPriority;

WORD wLanguage;

DWORD dwInitialFrames;

DWORD dwScale;

DWORD dwRate; // dwRate / dwScale == duration in seconds

DWORD dwStart;

DWORD dwLength; // In units above..., should be 1

DWORD dwSuggestedBufferSize;

DWORD dwQuality;

DWORD dwSampleSize; // = 0 -> treated as VBR

RECT rcFrame; // 0, 0, 0, 0

} AVIStreamHeader;

23

Stream format chunk

This chunk has a size of 0.

Stream name chunk

The strn chunk is ignored by VS�lter, so there is no need to read or write it.

24

7 Garbage in AVI �les

One way to set a delay in AVI �les is using the AVIStreamHeader::dwStart value (see page
10). However, not every player reads this value, so that such �les would not properly play
on them. Some applications, like VirtualDub and derivates (NanDub, VirtualDubMod) add
some data to the beginning of streams to be delayed.

Unfortunately, those applications don't care about the data format, but rather pad with
zeros. Those zeros are refered to as 'garbage' in this section. The scope is to explain how to
read such �les, which requires that the duration of the garbage section be determined.

It is of course required that the beginning of the valid data be found, for example in the case
of MP3, AC3 or DTS by looking for frame headers. Formats which don't use frame headers
that can be detected easily, like AAC, will result in broken streams if zeros are added to the
beginning.

7.1 Constant Bitrate

If the bitrate of a stream is constant, the duration of the garbage section is simply garbage_length
* data_rate.

7.2 Variable Bitrate

In this case, the duration must be retrieved chunk-wise:

As described on page 20, the duration of one chunk is
roundup(size_of_chunk / strf::nBlockAlign) * duration_per_frame.

Consequently, if the beginning of the valid data is the m-th byte in chunk n, the duration
of the garbage section is

sum[i=0..n-1](duration(chunk[i])) + roundup(m/nBlockAlign)

25

8 Overhead of AVI �les

This section describes how to predict the overhead of an AVI �le before muxing. Note: In
the case of low overhead AVI �les, the wording in this section is not applicable. Basicly, one
video/audio frame causes about 8-9 bytes of overhead in low overhead AVI �les.

8.1 General

The overhead of AVI �les depends on the number of CHUNKs in the �le. Other structures has
only very little in�uence on the total overhead. Each CHUNK causes the following amount of
overhead:

• 8 Bytes chunk header (all avi types)

• 16 Bytes for entry in Legacy Index (see page 12) (AVI 1.0 and the RIFF-AVI-List of
Hybride �les)

• 8 Bytes for entry in Standard Index (see page 15) (Open-DML)

That means, each CHUNK causes an amount of overhead of 16, 24 or 32 bytes.

8.2 Getting number of CHUNKS

8.2.1 Video

The easier part is the video stream: Each video frame takes one CHUNK.

8.2.2 Audio

The number of chunks for an audio stream depends on its format and packing. For speci�c
formats, where very special packing is required or considered normal (see page 19), the
overhead can be calculated easily from the settings. Otherwise, more precise information on
the muxing settings is needed.

8.2.3 Examples

Video: 3 hours, 25 fps (= 3,600,000 / 40ms = 90,000 frames per hour)
Audio: 2x MP3-VBR (with 1 frame per CHUNK and 24 ms per frame)
Audio: 2x AC3 (with 4 frames per CHUNK and 32ms per frame)
-> Video: 270,000 CHUNKs
-> Audio: 2*150,000 + 2*3*28,125 = 468,750 CHUNKs
-> Sum = 738,750 CHUNKs

26

	Introduction
	Why another AVI file format documentation?
	Basic data structures
	Chunks
	Lists

	AVI file types

	Layout of an AVI file
	Headers
	MainAVIHeader (avih)
	The Stream header list - general
	The stream header list element: strh
	The stream header list element: strf
	The stream header list element: indx
	The stream header list element: strn

	AVI Indexes
	old style index
	Open-DML Index
	Upper Level Index ('Super Index')
	The Standard Index

	Using the Open-DML Index

	The movi - Lists
	Audio types requiring special attention
	MP3
	AC3
	DTS
	VBR audio - general
	MPx VBR
	AAC
	VFR Audio - Storing Vorbis in AVI

	Subtitles in AVI files
	Garbage in AVI files
	Constant Bitrate
	Variable Bitrate

	Overhead of AVI files
	General
	Getting number of CHUNKS
	Video
	Audio
	Examples

